WaveStar®

Color Monitor

Setup and Operation

Ctrl Nr: PM375103
Revision: 003
Thank you for your recent purchase of a WaveStar® Color Monitor from Power Distribution, Inc.

For safety reasons as well as to ensure optimal performance of your WaveStar® Color Monitor, please carefully read the instructions before trying to install, operate, service or maintain the system.

For any questions regarding the installation, operation, service or maintenance of your WaveStar® Color Monitor, please contact us:

Power Distribution, Inc. | 4200 Oakleys Court | Richmond, VA 23223

+1 804 737 9880 | +1.800.225.4838
pdicorp.com | service@pdicorp.com

WaveStar® Color Monitor
Setup and Operation
Ctrl Nr: PM375103 Revision: 003

Release Date: December 2017
© 2017 by Power Distribution, Inc. All rights reserved.

Cover Photo: WaveStar® Color Monitor Home Screen

PDI, JCOMM, Quad-Wye, ToughRail Technology, and WaveStar are registered trademarks of Power Distribution Inc. All other trademarks are held by their respective owners.
Contents

Safety ..6

1 Introduction ...7
 1.1 WaveStar Color Monitor Summary ... 7
 1.2 Power On and Access ... 7
 1.3 Screen Summary and Navigation ... 8
 1.4 Entering Data .. 8

2 Color Monitor Networking ...10
 2.1 Supported Protocols ... 10
 2.2 Monitor Network Connections .. 10
 2.2.1 Modbus RTU Ports .. 11
 2.2.2 Modbus RTU 2-Wire vs. 4-Wire Configuration 11
 2.3 Modbus RTU Cables ... 12
 2.3.1 Cable Specification .. 12
 2.3.2 Cable Biasing and Termination .. 12
 2.4 Ethernet Cables .. 12
 2.5 Customer Modbus RTU Connections ... 12
 2.5.1 Power Distribution Unit (PDU) .. 13
 2.5.1 Remote Power Panel (RPP) ... 14
 2.5.1 JCOMM ... 14
 2.6 Modbus Addressing .. 15
 2.7 Communicating with the Monitor: Commands and Replies 16
 2.7.1 Modbus Commands and Replies .. 16
 2.7.2 Limit on Open Sockets .. 16
 2.7.3 SNMP Commands .. 16

3 Setup: Monitor and Network ..17
 3.1 SETUP: Miscellaneous Parameters .. 17
 3.2 Network Setup ... 18
 3.2.1 Downstream Modbus Device Chain Setup ... 18
 3.2.2 Modbus RTU Setup ... 18
 3.2.3 TCP/IP and Modbus TCP/IP Setup ... 19
 3.2.4 SNMP Setup ... 19
 3.2.5 Loading INI Parameters from an SD Card .. 20
 3.3 Software Versions ... 20

4 Device Chain: Settings ...22
 4.1 Initial Device Chain ... 22
 4.2 Device Settings .. 23
4.2.1 PDU Device Settings ... 23
4.2.2 Enhanced Subfeeds Settings ... 24
4.2.3 BCMS Normal and KWH Settings ... 24
4.2.4 BCMS CB Subfeeds Settings ... 25
4.2.5 BCMS IEC Settings ... 26

5 Device Chain: Readings ... 27
5.1 PDU Device Readings ... 27
5.2 Enhanced Subfeeds (ESF) Readings ... 28
5.3 BCMS (Normal) Panelboard Readings ... 30
5.4 BCMS KWH Readings ... 31
5.5 BCMS CB (Subfeeds) Readings ... 33
5.6 BCMS IEC Readings .. 33

6 Alarms and Troubleshooting ... 35
6.1 Summary Alarm Indicators .. 35
6.2 Alarm Screen and Alarm List ... 35
6.3 Alarms by Device Type ... 37
 6.3.1 Color Monitor Alarms .. 37
 6.3.2 PDU Alarms .. 37
 6.3.3 Enhanced Subfeeds .. 39
 6.3.4 BCMS Panelboard—Typical Alarms ... 40
6.4 Troubleshooting .. 40

7 Web Pages ... 42
Glossary .. 46
Bibliography .. 47
Appendix: Color Monitor Backpanel ... 48

Tables
Table 1 Pin-Out for Modbus Headers .. 11

Figures
Figure 1 WaveStar Color Monitor Installed in a JCOMM 7
Figure 2 HOME Screen and Navigation Buttons ... 8
Figure 3 Entering Alphanumeric Data ... 9
Figure 4 Color Monitor Network Connections ... 10
Figure 5 Color Monitor 4-wire Modbus Connections 12
Figure 6 Modbus RTU Connections: PDU Basic Contractor Board 13
Figure 7 Modbus RTU Connections: PDU Enhanced Contractor Board 13
Figure 8 Modbus RTU Customer Connection: RPP Upstream 14
Figure 9 JCOMM Modbus Connections ...14
Figure 10 Modbus Addressing ..15
Figure 11 SETUP Screen ..17
Figure 12 Calibrating the Touchscreen ...17
Figure 13 Modbus RTU Setup ..18
Figure 14 Modbus TCP/IP and SNMP Setup ...19
Figure 15 Model Information ..20
Figure 16 Initial Device List ...22
Figure 17 Settings: PDU Device ...23
Figure 18 Settings: Enhanced Subfeeds (ESF) ...24
Figure 19 Settings: BCMS Device ..25
Figure 20 Settings: BCMS Subfeeds ...25
Figure 21 Settings: BCMS IEC ...26
Figure 22 Readings: PDU ..27
Figure 23 Readings: Enhanced Subfeeds (ESF) (Part 1) ..28
Figure 24 Readings: Enhanced Subfeeds (ESF) (Part 2) ..29
Figure 25 Readings: BCMS (Normal) ...30
Figure 26 Readings: BCMS KWH (Part 1) ...31
Figure 27 Readings: BCMS KWH (Part 2) ...32
Figure 28 Readings: BCMS CB (Two Subfeeds) ...33
Figure 29 Readings: BCMS IEC Panelboard ...34
Figure 30 Alarm and Warning Summary Status Icons ..35
Figure 31 ALARM Screen with an Alarm List ...36
Figure 32 Find the Circuits in an Alarm Condition ..36
Figure 33 Web Pages: Home Page ..42
Figure 34 Web Pages: Device Chain ...42
Figure 35 Web Pages: Display Device ...43
Figure 36 Web Pages: PDU Board ...44
Figure 37 Web Pages: Enhanced Subfeeds ...45
Figure 38 Color Monitor Backpanel ...48
Safety

Please pay special attention to the use of “Danger” symbols throughout this manual indicating electrical or other safety hazards. Following these safety instructions is extremely important to avoid possible injury or death.

Follow safe electrical work practices:

- Read, understand, and follow the instructions before installing this product.
- Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel and in accordance with all local safety codes. Power Distribution, Inc. assumes no responsibility for any consequences arising out of the use of this manual. This document should not be viewed as sufficient by otherwise non-qualified personnel to operate, service, or maintain the equipment discussed.
- Disconnect and lock-out all power supplying equipment before working on or installing WaveStar® Color Monitor components. Use a properly rated voltage sensing device to confirm power is OFF.
- Install device in an appropriate electrical enclosure per local regulations.
- ESD sensitive equipment. Ground yourself, discharge any static charge and ensure that the device is effectively grounded before handling the unit.

DANGER!

Severe or fatal injury can result from electrical shock during contact with high voltage conductors, monitoring PCBs, or similar equipment.

Disconnect power before drilling holes, attaching conduit, and attaching WaveStar® Color Monitors to PDUs, RPPs, or other power distribution equipment.

Use Lock Out/Tag Out procedures.

Wear suitable personal protective clothing and use protective equipment for performing mechanical and electrical installations.

Leave ample space for attaching and routing wires.
1 Introduction

1.1 WaveStar Color Monitor Summary

The WaveStar® Color Monitor is a 7-inch color touchscreen which displays power management information for up to twenty (20) Branch Circuit Monitoring System (BCMS) devices and other PDI devices in the Monitor’s downstream Modbus network.

The Color Monitor is incorporated into PDI products, such as PDUs, RPPs, or JCOMM®s, and can also function as a stand-alone power monitoring station.

Figure 1 shows the Monitor used in a JCOMM®.

1.2 Power On and Access

The Color Monitor does not have an on/off switch. The Monitor automatically powers-on whenever power is applied to the unit in which it is installed.

When the unit is powered on for the first time, the Home Screen appears (Figure 2).

The Color Monitor is accessed by touching the screen. If the unit is powered up and is not touched for 15 minutes, the backlight will turn off to save power. The backlight turns back on when the operator again touches the screen, showing the last displayed screen.
1.3 Screen Summary and Navigation

Setup and configuration information for the Color Monitor are on these screens:

- **SETUP**: system parameters, such as number of devices in Monitor’s chain
- Device **SETTINGS**: Device-specific parameters, such as user-specified device name (DEVICES → Device Name → SETTINGS)
- **SOFTWARE VERSIONS**: a list of software versions for each device, accessible only from the HOME screen.
- **DEVICES** screen gives a list of all devices in the Monitor’s chain.
- Device **SETTINGS** screen lets you set device name and parameters specific to the device.

Setpoints in the device’s points list, such as breaker alarm thresholds, are not viewable or modifiable on the Monitor.

Power monitoring information as it is stored in each device’s points list (or Modbus register map) is in each **DEVICE READINGS** screen.

Alarms and warnings are displayed on these screens:

- **ALARM**: List of all extant warnings and alarms by device name
- All screens: Warning and alarm summary counts

HELP screen contains Modbus information.

1.4 Entering Data

When you touch a field that requires alphanumeric data, such as device names, passwords, or version numbers, a touchscreen keyboard will appear, prompting you for information based on context. You can toggle between LETTERS and SYMBOLS keyboards, for entering text or numbers (Figure 3).
Touch here to toggle between Symbol and Letters keyboards as you enter model information. Touch ENTER to complete the operation. Touch Cancel to terminate the operation.

Figure 3 Entering Alphanumeric Data
2 Color Monitor Networking

2.1 Supported Protocols

All protocols supported by the Color Monitor can be used simultaneously.

Downstream Protocol The downstream device network has fixed parameters of Modbus RTU, 9600 baud, EVEN parity.

Upstream Protocols There are separate upstream ports for Modbus RTU and Ethernet, supporting these protocols:

- Modbus RTU
- Ethernet port
 - TCP/IP, used by the web page server (see Chapter 7, Web Pages)
 - Modbus TCP/IP
 - SNMP Version 1

2.2 Monitor Network Connections

The Color Monitor’s backpanel has Modbus RTU and Ethernet ports (Figure 4).

For Color Monitors embedded in PDI products (PDUs, RPPs, or JCOMMs), Modbus RTU backpanel connections are typically made in manufacturing and extended to a terminal block or external panel for convenient customer access. See 2.5 Customer Modbus RTU Connections.

The customer’s Ethernet cable is connected directly to the Monitor’s Ethernet port.

![Figure 4 Color Monitor Network Connections](image-url)
2.2.1 Modbus RTU Ports

The Color Monitor has four (4) paralleled Modbus ports:

- J1 and J3 are header/plug connections for connecting to most devices.
 - J1 is the upstream port.
 - J3 is the downstream port.
- J2 and J4 accept standard RJ12 phone cable plugs for connection to an M4G PDU board.
 - J2 is the upstream port.
 - J4 is the downstream port.

The Modbus RTU interface is isolated, and pin designations are given in Table 1:

<table>
<thead>
<tr>
<th>Pin</th>
<th>J1, J3</th>
<th>J2 (for RJ12 plugs)</th>
<th>J4 (for RJ12 plugs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>2</td>
<td>RX-</td>
<td>RX-</td>
<td>TX-</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>TX-</td>
<td>RX-</td>
</tr>
<tr>
<td>4</td>
<td>TX-</td>
<td>RX+</td>
<td>TX+</td>
</tr>
<tr>
<td>5</td>
<td>TX+</td>
<td>TX+</td>
<td>RX+</td>
</tr>
<tr>
<td>6</td>
<td>NA</td>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Table 1 Pin-Out for Modbus Headers

2.2.2 Modbus RTU 2-Wire vs. 4-Wire Configuration

PDI devices have two (2) jumpers near their Modbus ports for configuring 2-wire vs. 4-wire Modbus RTU (see Figure 4). The Monitor’s 2-wire configuration jumpers are W1 and W2 (upstream) and W3 and W4 (downstream). Upstream and downstream chains can be differently configured.

For 2-wire configuration:

- At least one device in a device chain must have both jumpers jumped on its Modbus connection. If any device in the chain has jumpers installed for 2-wire, all of the device chain is 2-wire. To avoid confusion when troubleshooting, all of the devices in the chain should be jumped in the same way.
- TX+ or RX+ on the Monitor (either one, because the on-board 2-wire jumpers short them together) wires to TX+ or RX+ on downstream devices.
- TX- or RX- on the Monitor wires to TX- or RX- on downstream devices.
- The + and - signal wires should comprise of a (twisted) wire pair residing in the same shield.

For 4-wire configuration:

- All of these jumpers must be removed from every device in the chain.
- TX+ on the Monitor’s PCB or on the customer Building Management System (BMS) wires to RX+ on a device PCB (see Figure 5).
- TX- from the Monitor or BMS wires to RX- on device PCB (see Figure 5).
- A second pair of wires connects the other pair of TX+/RX+ & TX-/RX-.
- The TX+ & TX- going to the RX+ & RX- should be in the same shield. Do not run the +’s in one shield and the -’s in another. Doing so may lead to sporadic communication.
• Run a dedicated ground wire with the signal wires and only ground the shield at one end.

<table>
<thead>
<tr>
<th>Color Monitor or BMS</th>
<th>Device 1 PDU Board</th>
<th>Devices 2/3 BCMS PCB Subfeeds</th>
<th>Devices 4/5 BCMS Panelboards</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX+ → TX+</td>
<td>TX+ → TX+</td>
<td>TX+ → TX+</td>
<td>TX+ → TX+</td>
</tr>
<tr>
<td>RX- → TX-</td>
<td>TX- → TX-</td>
<td>TX- → TX-</td>
<td>TX- → TX-</td>
</tr>
<tr>
<td>TX+ → RX+</td>
<td>RX+ → RX+</td>
<td>RX+ → RX+</td>
<td>RX+ → RX+</td>
</tr>
<tr>
<td>TX- → RX-</td>
<td>RX- → RX-</td>
<td>RX- → RX-</td>
<td>RX- → RX-</td>
</tr>
</tbody>
</table>

Figure 5 Color Monitor 4-wire Modbus Connections

2.3 Modbus RTU Cables

2.3.1 Cable Specification

RS485/RS422 cable length can be up to 4000 ft. if you use the proper cable:

- The cable resistance should be ≤ 27 ohms/1000ft @ 1 kHz and the mutual capacitance should be ≤ 14pf/ft @ 1 kHz.

- 4-wire cabling:
 - RS422 is typically 4-wire.
 - Use a shielded cable with two (2) twisted pairs and a shield/ground wire.
 - The two transmit lines must be in one twisted pair and the two receive lines in the other twisted pair.

- 2-wire cabling:
 - RS485 is typically 2-wire and is slower than RS422.
 - Use a shielded cable with one (1) twisted pair and a shield/ground wire.

2.3.2 Cable Biasing and Termination

PDI devices have soft biasing (27K pull-up and pull-down resistors) on the + and – transmit and receive lines. Therefore, if the customer’s Master device allows for control, PDI recommends that the user turn on biasing and turn off termination, which may “fight” the biasing. Biasing the Master device’s lines is not critical because the Color Monitor is already biasing the lines. If termination is needed because of an extremely long cable run, PDI recommends that a small capacitor be put in series with the terminating resistor.

2.4 Ethernet Cables

The maximum length of Ethernet cable depends upon the customer’s choice of Ethernet cable.

2.5 Customer Modbus RTU Connections

When a Color Monitor is embedded in a PDI product (PDU, RPP, or JCOMM), the customer does not typically wire Modbus RTU directly to the Monitor. Downstream Modbus RTU links are typically to internal devices and are wired at the factory. The upstream Modbus RTU link is extended from the Monitor to a customer connection port, which differs by unit.
2.5.1 Power Distribution Unit (PDU)

On PDI PDUs, customers make Modbus RTU connections to the PDU’s Contractor Board. Basic and Enhanced Contractor Boards are shown (Figures 6, 7).

![Figure 6 Modbus RTU Connections: PDU Basic Contractor Board](image1)

![Figure 7 Modbus RTU Connections: PDU Enhanced Contractor Board](image2)
2.5.1 Remote Power Panel (RPP)

On PDI RPPs the Color Monitor **upstream** Modbus connection is brought to a terminal block for convenient customer connection.

Downstream connections are internal to the RPP and are wired at the factory.

Figure 8 Modbus RTU Customer Connection: RPP Upstream

2.5.1 JCOMM

When a JCOMM has a Color Monitor, the customer Modbus RTU connections are made to the JCOMM Connections Panel on the left inside of the unit.

Figure 9 JCOMM Modbus Connections
2.6 Modbus Addressing

Refer to Figure 10, “Modbus Addressing,” with the following bullet points:

- The Monitor is a Modbus master to its downstream devices. The upstream Modbus master cannot directly address these devices, but rather addresses them through the Monitor. Upstream and downstream are separate Modbus segments.

- The Monitor’s upstream address can be set to from 1 to 255, but you must leave enough addressing capacity for downstream devices. The monitor will not respond to a command sent to address 0. The address is set in Monitor Setup. See Section 3.2.3 “TCP/IP and Modbus TCP/IP Setup.”

- The Monitor’s downstream devices must be assigned consecutive addresses starting at address 1.

- For upstream addressing these device addresses are remapped as successor addresses to the Monitor. If the Monitor has upstream address 30, the downstream addresses 1, 2, 3, 4 are remapped to 31, 32, 33, 34 as seen from the BMS or other Modbus Master.

- Modbus addressing is the same for Modbus RTU and Modbus TCP/IP.
2.7 Communicating with the Monitor: Commands and Replies

2.7.1 Modbus Commands and Replies

Upstream Modbus on the Color Monitor supports three (3) Modbus commands only (with typical flag and data values shown in hexadecimal) for communicating with the points lists of the Monitor or devices in its chain:

1) Read Slave ID (command 11)

 Sent Hex: 01 11 C0 2C

 Reply Hex: 01 11 0D EA 52 50 20 44 69 73 70 6C 61 79 A3 A6

2) Read Multiple Holding Registers (command 3)

 Sent Hex: 01 03 00 00 00 01 84 0A

 Reply Hex: 01 03 02 00 00 B8 44

3) Write to a Single Register (command 6)

 Sent Hex: 01 06 00 00 00 00 00 89 CA

 Reply Hex: 01 06 00 00 00 00 00 89 CA

It is important to carefully verify early in system bring-up that the registers you are addressing are the correct ones. In a points list or Modbus register map, the first analog channel is numbered 1 but is accessed in software with an index value of 0. Consequently, it is common for a system to be one register off. Because adjacent registers often have similar readings, being one register off is not necessarily apparent.

Most analog values are 2-byte integers representing a measured parameter such as input voltage or current. KWH uses two (2) adjacent 2-byte integers. Some parameters require scaling and are so noted in the points list.

2.7.2 Limit on Open Sockets

When using Modbus TCP/IP, the Color Monitor can have at most five (5) sockets open at any one time.

2.7.3 SNMP Commands

Only SNMP version 1 is supported.

The following commands are supported and are typical for the product:

- snmpget
- snmpgetnext
- snmpset

See the MIB file for specifics. The MIB can be downloaded from the PDI website. Reference the Bibliography in this manual.
3 Setup: Monitor and Network

You set configuration parameters and other information for the Color Monitor in three ways:

- The SETUP screen has system parameters, such as banner name, password, and network addresses.
- Device SETTINGS screens let you set device names, specific device configurations, and software versions for each BCMS device in the Monitor’s chain. (See Chapter 4, Device Chain: Settings.)
- The SOFTWARE VERSIONS screen lets you add the model information for the unit monitoring the Color Monitor.

3.1 SETUP: Miscellaneous Parameters

Touch SETUP to display buttons for several configuration items (Figure 11).

A password is required to access and change setup parameters. Enter the password (default is “PDI”). The user can navigate through any of the screens and come back to SETUP without having to re-enter the password for 10 minutes. Touch PASSWORD to change to a new password.

Touch buttons in the initial SETUP screen to link to miscellaneous setup functions:

- PASSWORD: Keyboard appears, enter password, then type new password.
- HORN DISABLED: Toggle Monitor’s audible alarm to ENABLED/DISABLED.
- BANNER: Banner setup (here shown as “PDI DISPLAY”) is on same screen as Modbus setup (Figure 7).
- TIME & DATE: Set time and date; used on HOME screen and alarm timestamps.
- CALIBRATE GUI: See next figure.

Figure 11 SETUP Screen

Figure 12 Calibrating the Touchscreen

CALIBRATE GUI: Color Monitors are calibrated at the factory and should not need calibration in the field. However, if necessary, touch CALIBRATE GUI and follow on-screen instructions, as shown at left.
3.2 Network Setup

Note: Improper configuration of a WaveStar Color Monitor may conflict with other monitors or devices on the network.

3.2.1 Downstream Modbus Device Chain Setup

To set Modbus device chain parameters, touch DEVICES/MODBUS (Figure 13):

- **Number of Devices** should equal the number of devices in the Monitor’s device chain. Up to twenty (20) devices are allowed. The Monitor uses this number to determine how many devices to search for in its downstream chain.
- When you add new devices, increment this counter, then press “ENTER”. The Monitor will automatically start a new search and find all of the downstream devices. The devices will then be listed in the DEVICES Screen, where the added devices will initially show up as generic device names.
- For each new device the user should then enter a unique device name. Unique device names are needed to isolate alarms and measurements to specific devices.

On SETUP screen, touch DEVICES/MODBUS. The DEVICES/MODBUS screen defines the Modbus network and device chain as well as set the banner name for the header.

Modbus Device Chain:
- **Banner** Name displayed on top line.
- **Number of Devices** should equal number of devices connected in Monitor’s downstream device chain.
- **Upstream Modbus**
 - Address of Monitor on upstream side
 - Baud rate (9600/19200/38400)
 - Parity (even/odd/none)
- **Downstream Modbus** Network characteristics are fixed and cannot currently be modified.

Figure 13 Modbus RTU Setup

3.2.2 Modbus RTU Setup

Downstream Modbus settings cannot be changed.

Upstream Modbus provides network characteristics on the upstream side of the Monitor.

- **Address** is the address that the upstream Modbus master, such as the Building Management System (BMS), uses to address the Monitor. The downstream device addresses are incremented sequentially from this address. So if the Monitor has address 20, the next three devices will appear 21, 22, and 23 to the upstream master device. (See Figure 9, “Modbus Addressing”.)
- **Upstream Modbus** settings for **Baud** rate and **Parity** must match those for the upstream Modbus master.

3.2.3 TCP/IP and Modbus TCP/IP Setup

For TCP/IP, the customer must provide an Ethernet cable connected to the Ethernet port (RJ45 header J11) on the Monitor. (See Figure 4, “Color Monitor Network Connections”.)

On the **SETUP** screen, touch **NETWORK/SNMP** to display the network parameters for TCP/IP (Figures 11, 14)).

The following must be specified for Modbus TCP/IP:

- IP Address
- Subnet Mask
- Gateway

Each connected monitor must be assigned a unique address. DHCP is not supported.

Touch **RESTART WITH NEW SETTINGS** if any parameter is changed on this screen. The processor will reboot and search the network for connections.

![Figure 14 Modbus TCP/IP and SNMP Setup](image)

3.2.4 SNMP Setup

To use SNMP, the customer must connect an Ethernet link to the RJ45 header J11 (see Figure 4) on the Monitor using a standard Ethernet cable.

For SNMP setup, on the **SETUP** screen, touch **NETWORK/SNMP** to display the network parameters for SNMP (Figures 11, 14).

In addition to the TCP/IP specification, the following must be specified for SNMP:

- Specify the **Trap Server** IP address
- Toggle **ENABLED/DISABLED** for the trap server.
• Touch **SEND TEST TRAP** to verify operation.
• **Get Community** security string for Get operations.
• **Set Community** security string for Set operations.

Touch **RESTART WITH NEW SETTINGS** if any parameter is changed on this screen. The processor will reboot and search the network for connections.

3.2.5 Loading INI Parameters from an SD Card

Touching **Load INI** loads configuration parameters from an SD card inserted into the Monitor. This function makes it easy to initialize a set of Monitors using common parameters. It is intended for manufacturing and service use.

3.3 Software Versions

The **SOFTWARE VERSIONS** list (Figure 15) lists information about software levels for the Monitor and its device chain and a customer-specified model number for the unit in which the Monitor is installed, such as a PDU or RPP. The list has no configuration use: it does not have parameters that determine Monitor operation.

- **MODEL number**: Touch **MODEL** and enter model number with the pop-up keyboard.
• **Display Version Number** is given by the Monitor’s onboard software.
• **Device Version Numbers** are entered in device setup: Go to **DEVICES** screen, select device, select **VERSION** field, and enter data.
4 Device Chain: Settings

A “device” is a points list (or Modbus register map) representing a physical monitored entity, such as a panelboard. Each points list instance has a single Modbus address.

A single PCB can have multiple devices with their own Modbus addresses. A BCMS Data Acquisition Board, for example, can have two panelboard devices plus a small two-subfeed device, or up to three Modbus addresses.

A device may also encompass more than one PCB. A PDU device with a single Modbus address represents both a PDU M4G board and a PDU contractor board.

Points lists are loaded onto PCBs during manufacturing.

4.1 Initial Device Chain

Upon initial power-on, the Monitor searches its Modbus device chain for devices up to the device count given in SETUP. The DEVICES screen lists all devices in the Monitor’s downstream chain (Figure 16). Each device in the Monitor’s device chain has

- a unique Modbus address,
- a device type that is identified by its Modbus slave ID, and
- its own points list (Modbus register map).

In the DEVICES screen device list, the Monitor displays the devices it finds in order of discovery using these device types and default generic names:

1. **PDU** (Power Distribution Unit) with PDU transformer measurements and contractor board alarms and relays
2. **BCMS ESF** (BCMS Enhanced Subfeeds) for large PDU subfeeds (e.g., 250A)
3. **BCMS** (BCMS Normal panelboard points list), which lets you customize alarm settings for individual circuits
4. **BCMS KWH** (BCMS KWH panelboard points list), which provides power usage measurements for individual panelboard circuits
5. **BCMS CB**, a small points list, associated with BCMS Normal or KWH points lists, with current measurements for two subfeeds from a PDU or RPP.
6. **BCMS IEC**, a points list similar to BCMS KWH, for IEC 36 or 72 circuit panelboards.

The initial device list shows the generic device types discovered by the Monitor in its device chain.

In this example, there is a PDU with two BCMS-monitored panelboards and the generic BCMS device name appears twice.

Users should change these generic device names to unique names, in device SETTINGS, which is necessary to isolate alarms to specific devices.
The downstream devices should be addressed 1 to N where N is the number of devices, not to exceed 20. See Figure 10, “Modbus Addressing”.

If devices are later added to the device chain,

- the user’s administrator must increase the Modbus device count in SETUP, which causes the Monitor to search its device chain to fill the increased device count; and
- the Monitor will display the additional devices as generic device types, as in Figure 15, until the administrator assigns them unique device names.

4.2 Device Settings

Each device has a SETTINGS screen for changing device name, software version, and device configuration. These settings provide information to the Monitor in addition to each device’s own internal setup.

Device settings will usually be entered by PDI manufacturing or service representatives, but can be entered by customer administrators.

4.2.1 PDU Device Settings

PDU devices (Figure 17) have only two settings: device NAME and VERSION.

Figure 17 Settings: PDU Device

```
Set NAME:
- Touch NAME field (“PDU” in this example):
  - A keyboard appears.
  - User may be requested to enter password (default is “PDI”).
  - Type in device name (up to 16 characters); touch ENTER.
  - Device Name is put in header under banner and in DEVICES screen device list.

Set VERSION:
- Touch VERSION field.
  - A keyboard appears.
  - If requested, enter version number update password (“VNUP”) + touch ENTER.
  - Enter Version number for PDU board + touch ENTER.
```
4.2.2 Enhanced Subfeeds Settings

BCMS Enhanced Subfeeds (ESF) devices are for large PDU subfeeds to other PDUs and RPPs. A single ESF Points List can monitor 1-14 subfeeds (Figure 18):

- If CTs on installed on ABC-phases only, 14 subfeeds can be monitored.
- If CTs are also installed on neutrals (ABCN), at most 10 subfeeds can be monitored.

![Enhanced Subfeeds Settings](image)

Figure 18 Settings: Enhanced Subfeeds (ESF)

4.2.3 BCMS Normal and KWH Settings

BCMS panelboard devices—BCMS KWH and BCMS (Normal)—have the same settings. BCMS KW and BCMS KWH are default names used in different software versions for the same points list, shown in Figure 19.

You can set the device NAME and software VERSION with the pop-up keyboards. You may have to enter a password first.

You can sequentially number panelboard circuits for up to eight (8) 42-circuit panelboards, allowing measurement and alarm identification for all 336 circuits in an 8-panelboard PDU.

Standard panelboards are always laid out 1, 3, 5… 41 down the left side and 2, 4, 6… 42 down the right side. Select ODD/EVEN to display them in this order or select STANDARD to display them as consecutive numbers (1, 2, 3… 42) down left then down right side.
4.2.4 BCMS CB Subfeeds Settings

In addition to its panelboard distribution, an RPP can have a two-subfeed distribution with its own points list. (These are not the same as the Enhanced Subfeeds (ESF) points list which is for a subfeed-type PDU.)

You can set only the device **NAME** and the software **VERSION** in **BCMS CB SETTINGS** (Figure 20).

NAME: Enter a unique device name (up to 16 characters); device name is propagated to header and device list.

START: Number for first panelboard circuit, touch to increment +42 to next panelboard. Up to eight (8) PBs are allowed: 1 (1-42), 43 (43-84)… 295 (295-336).

NUMBERING: Toggle panelboard numbering layout

- **STANDARD** = Numbers increment in numerical order (1, 2, 3… 42) down left side first (1-21), then right side (22-42).
- **ODD/EVEN** = List circuits as they are laid out on panelboard, odd numbered circuits on left side, even numbered circuits on right side (such as 1, 3, 5, …, 41 on left side, and 2, 4, 6, …, 42 on right side).

Available Settings

Touch **NAME** box to bring up keyboard where you can enter the **Device Name** (up to 16 characters). The device name is propagated to the header and device list.

Device name should be unique, so that alarms can be associated with a specific device.

Set version: Touch **VERSION** box to enter software versions. Keyboard appears requesting password and then requests that you enter the version code (enter “VNUP”).
A BCMS Data Acquisition Board—the physical BCMS PCB—can have three BCMS devices with their own points lists:

- Panelboard 1 points list, BCMS (Normal), BCMS KWH, or BCMS IEC
- Panelboard 2 points list, using the type of points list as for Panelboard 1
- Subfeed points list for two subfeed circuits (This short points list is described at the end of the BCMS Normal and BCMS KWH points lists, but when used is a separate list with its own Modbus address.)

Each BCMS device gets its own device entry in the Monitor’s device chain, its own points list, and its own Modbus address.

4.2.5 BCMS IEC Settings

IEC panelboards with up to 72 individual circuits use the BCMS IEC points list. The initial generic device type is BCMS IEC. Settings are only Device Name and Software Version.

Touch **BCMS IEC** **device name** in **DEVICES** list. Device name turns blue when selected.

Available Settings

Touch **NAME** box to bring up keyboard where you can enter the **Device NAME** (up to 16 characters). The device name is propagated to the header and device list.

Device name should be unique, so that alarms can be associated with a specific device.

Set version: Touch **VERSION** box to enter software versions. Keyboard appears requesting password and then requests that you enter the version code (enter “VNUP”).

Figure 21 Settings: BCMS IEC
5 Device Chain: Readings

Each device in the Monitor’s device chain has a **READINGS** screen chain, providing power monitoring information.

- Select (touch) **DEVICES** to see the device list and then **READINGS**.
- Use **PREVIOUS/NEXT** to step through the screen chain.

5.1 PDU Device Readings

READINGS from the PDU are power measurements at input to and output from the PDU transformer (Figure 22).

Figure 22 Readings: PDU

INPUT to the PDU transformer:
- **Voltage**: AB BC CA
- **THD** (total harmonic distortion):
 - AB BC CA
- **Frequency**: in Hz
- **Current** A B C (optional)
- **THD** A B C (optional)
- **Ground Current**

OUTPUT from the PDU transformer:
- Instantaneous measurements:
 - **Voltage**: AB BC CA AN BN CN
 - **ABC(N) phase readings and totals**:
 - **Current**
 - **KW**
 - **KVA**
 - **KVAR**
 - **PF**
 - **Cumulative Measurement**:
 - **KWH**
 - Touch **Clear** to set KWH to 0.
5.2 Enhanced Subfeeds (ESF) Readings

Readings from an Enhanced Subfeeds (ESF) device are typically power measurements and alarms for high amperage PDU circuits that are subfeeds to other PDUs or RPPs (Figures 23-24).

Enhanced Subfeeds devices can monitor

- Up to (14) 3-phase circuits (ABC)
- Up to (10) 3-phase plus neutral circuits (ABCN)

![Image]

Select (touch) ESF device name in the device list (PDU in this list). Device name turns blue when selected and device name appears in header.

BCMS ESF is the default generic device name. Users can change the device name in SETTINGS.

Touch READINGS to see the first screen of ESF power monitoring data.

![Image]

NO: Circuits are numbered 1-14 and broken out by phase (1A, 1B, 1C).

Instantaneous measurements:
- AMPS
- KW
- KVA
- KVAR
- PF Power factor per phase

Cumulative measurements:
- KWH (KWH can be reset to 0 on the third READINGS screen.)

If neutrals are also monitored:
- Only 10 circuits total can be monitored with this ESF device.
- There is an extra line for each neutral circuit (shown at left).

Figure 23 Readings: Enhanced Subfeeds (ESF) (Part 1)
NO: Subfeed circuit by number and phase
Instantaneous measurements by phase:
% LOAD: %Load is a percent of the Full Load amperage for this breaker; “Full Load” is a user-specified percent of breaker size, given in Modbus register 494 (“Full Load Percentage”) in the ESF Points List.
CREST FACTOR: Peak current/RMS current
%THD: Total Harmonic Distortion as

Measurements and alarms:
NO: Circuit by number and phase
AMPS: Instantaneous current in Amperes (A)
CB: Circuit breaker rating (A)
MIN: Minimum current read (A) after first registering a minimum current
MAX: Maximum current read (A)
ZERO: OK = Current has not read 0 after registering a current; ACTIVE = Current has read 0 after registering a current.
WARNING: OK = No warnings outstanding for this circuit; ACTIVE = warning outstanding.
ALARM: OK = No warnings outstanding for this circuit; ACTIVE = alarm outstanding

Instantaneous measurements:
Voltage
Frequency

Figure 24 Readings: Enhanced Subfeeds (ESF) (Part 2)
5.3 BCMS (Normal) Panelboard Readings

Select BCMS device name in list (BCMS in this list). Device name turns blue when selected and device name displays in header.

Touch READINGS to see BCMS power monitoring data.

Measurements and Alarms, individual panelboard circuits (42 circuits):

- **NO** = Circuit Number
- **AMPS** = Amperes
- **CB** = Circuit breaker rating (Amps)
- **MIN** = Lowest current read
- **MAX** = Highest current read
- **ZERO**: OK = Current has not dropped to 0 since last reset; ACTIVE = Current has read 0 after having read a minimum current
- **WARNING**: OK = No warning outstanding; ACTIVE = warning outstanding
- **ALARM**: OK = No alarm outstanding; ACTIVE = Alarm is outstanding

Panelboard totals, using main feeds or BCMS computed measurements:

- **PB Amps**: Total panelboard measurements, phases ABCNG
- **% Load**: Percent of maximum PB load as specified by user in points list
- **Both PBs**: Sum of phase ABCN measurements for both panelboards (not available if PBs operate at different voltages)
- **Frequency**: Measurement in Hz

Panelboard instantaneous readings:

- **Voltage** AB, BC, etc., to panelboard with THD (Total Harmonic Distortion %) by phase:
 - Line 1 = voltage source 1
 - Line 2 = voltage source 2, if present

Panelboard power measurements by phases ABC and total:

- **KW**
- **KVA**
- **KVAR**
- **PF**

Panelboard cumulative reading:

- **KWH** panelboard total
 - **Clear** = Reset KWH to 0.

Figure 25 Readings: BCMS (Normal)
BCMS Normal points list allows customization of thresholds and alarm level for each individual circuit, which is done in BCMS setup, not in the Color Monitor. KWH Power measurements are available only for panelboard totals. See Figure 25, “Readings: BCMS Normal”.

5.4 BCMS KWH Readings

Compared to BCMS Normal, BCMS KWH panelboard devices have one additional screen showing power measurements (KWH, etc.) for individual circuits. The first screen in the device’s chain provides KW, KVA, KVAR, and power factor readings for each panelboard circuit (Figure 26-27).

Figure 26 Readings: BCMS KWH (Part 1)
Panelboard instantaneous readings:
Voltage AB, BC, etc., to panelboard with THD (Total Harmonic Distortion %) by phase:
Line 1 = voltage source 1
Line 2 = voltage source 2, if present

Panelboard power measurements by phases
ABC and total:
KW
KVA
KVAR
PF

Panelboard cumulative reading:
KWH to panelboard as whole
Clear = Reset KWH to 0.

Panelboard totals, instantaneous readings, using main feed or BCMS computed measurements:
PB Amps: Total panelboard measurements, phases ABCNG
% Load: Percent of maximum PB load as specified by user in points list
Both PBs: Sum of phase ABCN measurements for both panelboards (not available if PBs operate at different voltages)
Frequency: Measurement in Hz

Figure 27 Readings: BCMS KWH (Part 2)
5.5 BCMS CB (Subfeeds) Readings

The short BCMS CB (Subfeeds) points list is associated with panelboard BCMS Normal or KWH points lists and provides current readings for two subfeeds (Figure 28). It is typically used with an RPP, which can have subfeeds to other power distribution equipment in addition to its panelboards. It is not used with large subfeed PDUs, which use the Enhanced Subfeeds (ESF) points list.

A BCMS Data Acquisition PCB can have three Modbus addresses: two panelboards with BCMS Normal or KWH points list and a third BCMS CB subfeeds points list.

5.6 BCMS IEC Readings

BCMS IEC panelboards have three readings screens (Figure 29). For panelboard 1, individual circuits are numbered 1L1 to 1L72. Panelboard circuits are numbered sequentially down the left side (1L1-1L36) and then down the right side (1L37-1L72).

BCMS IEC points list does not have the BCMS CB subfeeds option.
Figure 29 Readings: BCMS IEC Panelboard

Touch BCMS IEC device name in the device name list. Device name turns blue when selected and device name displays in header. (Device name can be changed in SETTINGS.)

Touch READINGS to see BCMS IEC panelboard power monitoring data in three screens.

Panelboard Individual Circuits

Instantaneous Measurements:
- NO = circuit number (scroll through 42 circuits)
- AMPS = Amperes
- KW = Kilowatts
- KVA = kilovolt-amperes
- KVAR = kilovolt-amperes reactive
- PF = power factor
- KWH = Kilowatt Hours

Panelboard Circuits, Measurements and Alarms:
- NO = Circuit Number
- AMPS = Amperes
- CB = Circuit breaker rating (Amps)
- MIN = Lowest current read
- MAX = Highest current read
- ZERO: OK = Current has not dropped to 0 since last reset; ACTIVE = Current has read 0 after having read a minimum current
- WARNING: OK = No warning outstanding; ACTIVE = warning outstanding
- ALARM: OK = No alarm outstanding; ACTIVE = Alarm is outstanding

Panelboard totals, instantaneous measurements:
- Voltage AB, BC, etc., to panelboard with THD (Total Harmonic Distortion %) by phase:
- Voltage source
- Frequency

Panelboard totals instantaneous power measurements by phases ABC and total:
- KW
- KVA
- KVAR
- PF

Panelboard cumulative reading:
- KWH to panelboard as whole
- Clear = Reset KWH to 0.
6 Alarms and Troubleshooting

The Color Monitor displays alarms and warnings for all devices in the Monitor’s device chain. The Monitor reads the alarms and warnings from the points list (Modbus register map) of each device.

6.1 Summary Alarm Indicators

The Color Monitor indicates that there are extant alarms with three general indicators:

- The summary count of warnings and alarms for the Monitor’s entire device chain is shown on every screen (Figure 30).

![Figure 30 Alarm and Warning Summary Status Icons](image)

- There is also a light under the screen that glows green if none of the devices in the Monitor’s chain has warnings or alarms and red if there are outstanding warnings or alarms (See Figure 1).
- In addition, the Monitor has a dry contact (NO) connection on the backpanel that signals a summary alarm whenever any alarm is present in the Monitor’s device chain (See Monitor backpanel, Figure 38).

6.2 Alarm Screen and Alarm List

On any screen, touch the **ALARM** button to show the **ALARM** screen.

The **ALARM** Screen (Figure 31) lists all outstanding warning and alarms by device name with a date-time stamp in a scrollable list. If no alarms are outstanding, there will be only one line, “No Alarms”.

The warning or alarm gives the **device name** and locates the **device component** that is the alarm source. For example, for a BCMS panelboard device, the alarm may be located to

- the panelboard, such as “Over Current PB”, or
- the main voltage feed to the panelboard, such as “Over Volt Main,” or
- the individual panelboard circuit, such as “CB 19 Zero Current”.

To further investigate individual circuits in warning/alarm state (Figure 32):

1. Note the device name and the warning/alarm.
2. Touch the **DEVICES** button to show the device list.
3. In the device list, scroll to the **device name** that has the warning/alarm. Touch the device name to show the device’s circuit list.
4. Step through the device’s screen chain with **PREVIOUS/NEXT** to find the **ALARM** heading.
5. Scroll within the circuit list on the first device screen to find circuit or other component in warning/alarm. An alarm may apply to a circuit or to the entire device, such as “Under Current PB.”

Touching CLEAR ALL clears all outstanding warnings and alarms on screen and resets corresponding Modbus registers in the device points list. It takes several seconds for alarms to clear. If a warning/alarm condition remains outstanding, the warning/alarm will remain on the ALARM screen.

Touching SILENCE HORN silences the Color Monitor’s audible alarm, which sounds when an alarm is issued.

Device Name
BCMS KW = device (generic panelboard device with KWH points list). Device Name should be changed from generic name to user-specified name on the device’s SETTINGS screen.

Alarm or Warning Name
“Under Volt Main” locates the problem to the main voltage source to the panelboard.

Figure 31 ALARM Screen with an Alarm List

Find the Device Name noted in the alarm in the device list.

Step through the device’s screen chain (using NEXT) to find the screen with the ALARM column.

Scroll through the device’s circuits to find the component in alarm. (Alarm shows as ACTIVE under ZERO, WARNING, or ALARM.)

Review information for that circuit on all of the device’s screens.

Figure 32 Find the Circuits in an Alarm Condition
6.3 Alarms by Device Type

Each device has its own alarm set based on its points list. Warnings and alarms that can be viewed on the Monitor are listed below. The Monitor does not display setpoints from the points lists, such as alarm thresholds.

6.3.1 Color Monitor Alarms

DISPLAY Comm. N Error (N is device number from 1-20): Communication error with one of the devices in the Monitor’s downstream device chain

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY Comm. N Error (N is device number from 1-20):</td>
<td>Communication error with one of the devices in the Monitor’s downstream device chain</td>
</tr>
</tbody>
</table>

6.3.2 PDU Alarms

General PDU Alarms

<table>
<thead>
<tr>
<th>Warning or Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO</td>
<td>Emergency Power Off on PDU has been engaged. When EPO button is pushed, the alarm is activated and the unit’s main input circuit breaker will then be shunt-tripped off line.</td>
</tr>
<tr>
<td>Remote EPO</td>
<td>Remote EPO on PDU can be activated in by closing the contacts on the contractor board. When Remote EPO button is activated, the alarm is activated and the unit’s main input circuit breaker will then be shunt-tripped off line.</td>
</tr>
<tr>
<td>Thermal Overtemp</td>
<td>Stage 1 transformer temperature alarm: 180°F or higher temperature registered in the transformer windings.</td>
</tr>
<tr>
<td>Thermal Hightemp</td>
<td>Stage 2, PDU shutdown on transformer temperature alarm by tripping main PDU input circuit breaker when 195°F or higher temperature is registered in the transformer windings. (Temperature threshold can vary by transformer and PDU.)</td>
</tr>
<tr>
<td>Phase Rotation</td>
<td>Input phase rotation is incorrect.</td>
</tr>
<tr>
<td>S1-S2 Phase Angle</td>
<td>Dual input sources are not synchronized; cannot shutdown one source and transfer load to the alternate source.</td>
</tr>
<tr>
<td>Ground Curr Trip</td>
<td>Ground current above preset level (10A) causes breaker trip (normally disabled, enable as option).</td>
</tr>
<tr>
<td>Phase Rotation Trip</td>
<td>Incorrect phase rotation causes breaker trip (normally disabled, enable as option).</td>
</tr>
<tr>
<td>Over Voltage Trip</td>
<td>Over voltage causes breaker trip (normally disabled, enable as option).</td>
</tr>
<tr>
<td>Under Voltage Trip</td>
<td>Under voltage causes breaker trip (normally disabled, enable as option).</td>
</tr>
</tbody>
</table>
PDU Transformer Input

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE: If the PDU is configured for dual inputs, “Input 1” or “Input 2” will prefix the alarm instead of “Input.”</td>
<td></td>
</tr>
<tr>
<td>Input Voltage AB High</td>
<td>Input voltage AB measures above threshold level in points list.</td>
</tr>
<tr>
<td>Input Voltage AB Low</td>
<td>Input voltage AB measures below threshold level in points list.</td>
</tr>
<tr>
<td>Input Voltage BC High</td>
<td>Input voltage BC measures above threshold level in points list.</td>
</tr>
<tr>
<td>Input Voltage BC Low</td>
<td>Input voltage BC measures below threshold level in points list.</td>
</tr>
<tr>
<td>Input Voltage CA High</td>
<td>Input voltage CA measures above threshold level in points list.</td>
</tr>
<tr>
<td>Input Voltage CA Low</td>
<td>Input voltage CA measures below threshold level in points list.</td>
</tr>
<tr>
<td>Input Frequency High</td>
<td>Input frequency measures above threshold level.</td>
</tr>
<tr>
<td>Input Frequency Low</td>
<td>Input frequency measures below threshold level.</td>
</tr>
<tr>
<td>Input Current A High</td>
<td>Input current phase A measures above threshold level (optional).</td>
</tr>
<tr>
<td>Input Current A Low</td>
<td>Input current phase A measures below threshold level (optional).</td>
</tr>
<tr>
<td>Input Current B High</td>
<td>Input current phase B measures above threshold level (optional).</td>
</tr>
<tr>
<td>Input Current B Low</td>
<td>Input current phase B measures below threshold level (optional).</td>
</tr>
<tr>
<td>Input Current C High</td>
<td>Input current phase C measures above threshold level (optional).</td>
</tr>
<tr>
<td>Input Current C Low</td>
<td>Input current phase C measures below threshold level (optional).</td>
</tr>
</tbody>
</table>

PDU Transformer Output

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE: If the PDU is configured for dual outputs, “Output 1” or “Output 2” will prefix alarm instead of “Output.”</td>
<td></td>
</tr>
<tr>
<td>Output Voltage AB High</td>
<td>Output voltage AB measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage AB Low</td>
<td>Output voltage AB measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage BC High</td>
<td>Output voltage BC measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage BC Low</td>
<td>Output voltage BC measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage CA High</td>
<td>Output voltage CA measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage CA Low</td>
<td>Output voltage CA measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage AN High</td>
<td>Output voltage AN measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage AN Low</td>
<td>Output voltage AN measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage BN High</td>
<td>Output voltage BN measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage BN Low</td>
<td>Output voltage BN measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage CN High</td>
<td>Output voltage CN measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Voltage CN Low</td>
<td>Output voltage CN measures below threshold level in points list.</td>
</tr>
</tbody>
</table>
Alarms and Troubleshooting

Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current A High</td>
<td>Output current phase A measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Current A Low</td>
<td>Output current phase A measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output Current B High</td>
<td>Output current phase B measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Current B Low</td>
<td>Output current phase B measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output Current C High</td>
<td>Output current phase C measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output Current C Low</td>
<td>Output current phase C measures below threshold level in points list.</td>
</tr>
<tr>
<td>Output KW A High</td>
<td>Output KW phase A measures above preset level.</td>
</tr>
<tr>
<td>Output KW B High</td>
<td>Output KW phase B measures above preset level.</td>
</tr>
<tr>
<td>Output KW C High</td>
<td>Output KW phase C measures above preset level.</td>
</tr>
<tr>
<td>Output KW Total High</td>
<td>Output KW total measures above threshold level in points list.</td>
</tr>
<tr>
<td>Output KVA A High</td>
<td>Output KVA phase A measures above preset level.</td>
</tr>
<tr>
<td>Output KVA B High</td>
<td>Output KVA phase B measures above preset level.</td>
</tr>
<tr>
<td>Output KVA C High</td>
<td>Output KVA phase C measures above preset level.</td>
</tr>
<tr>
<td>Output KVA Total High</td>
<td>Output KVA Total measures above preset level.</td>
</tr>
<tr>
<td>Neutral Current High</td>
<td>Neutral current measures above preset level.</td>
</tr>
<tr>
<td>Neutral Current Low</td>
<td>Neutral current measures below preset level.</td>
</tr>
<tr>
<td>Ground Current High</td>
<td>Ground current measures above preset level.</td>
</tr>
<tr>
<td>Ground Current Low</td>
<td>Ground current measures below preset level.</td>
</tr>
</tbody>
</table>

Contractor Board Alarms

<table>
<thead>
<tr>
<th>Alarms</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build N (N = 1-8)</td>
<td>Building alarms, customizable names up to 8 characters can be set in software.</td>
</tr>
<tr>
<td>Digit N (N = 1-4)</td>
<td>Digital alarms, customizable names up to 8 characters can be set in software.</td>
</tr>
</tbody>
</table>

6.3.3 Enhanced Subfeeds

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB N Zero Current (N = 1-14)</td>
<td>Circuit N has lost current after previously measuring a minimum current.</td>
</tr>
<tr>
<td>CB N High Current Warning (N = 1-14)</td>
<td>Circuit N has exceeded current warning threshold.</td>
</tr>
<tr>
<td>CB N High Current Alarm (N = 1-14)</td>
<td>Circuit N has exceeded current alarm threshold.</td>
</tr>
<tr>
<td>Over Voltage</td>
<td>Over voltage measured to ESF board as specified in points list.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Alarm Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Under Voltage</td>
<td>Under voltage measured to ESF board as specified in points list.</td>
</tr>
</tbody>
</table>

6.3.4 BCMS Panelboard—Typical Alarms

Circuit Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB N Zero Current (N = 1-336)</td>
<td>Circuit N has lost current after measuring a minimum current.</td>
</tr>
<tr>
<td>CB N High Current Warning (N = 1-336)</td>
<td>Circuit N exceeds high current warning threshold.</td>
</tr>
<tr>
<td>CB N High Current Alarm (N = 1-336)</td>
<td>Circuit N exceeds high current alarm threshold.</td>
</tr>
</tbody>
</table>

Panelboard Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over Current PB</td>
<td>Current feeding one panelboard is above alarm threshold.</td>
</tr>
<tr>
<td>Under Current PB</td>
<td>Current feeding one panelboard is below alarm threshold.</td>
</tr>
<tr>
<td>Over Curr both PBs</td>
<td>A common circuit feeding both panelboards is over alarm threshold.</td>
</tr>
<tr>
<td>Under Curr both PBs</td>
<td>A common circuit feeding both panelboards is under alarm threshold.</td>
</tr>
<tr>
<td>Over Volt Main</td>
<td>Over voltage measured on main voltage source to panelboard.</td>
</tr>
<tr>
<td>Under Volt Main</td>
<td>Under voltage measured on main voltage source to panelboard.</td>
</tr>
<tr>
<td>Over Volt Alt</td>
<td>Over voltage measured on alternate voltage source to panelboard.</td>
</tr>
<tr>
<td>Under Volt Alt</td>
<td>Under voltage measured on alternate voltage source to panelboard.</td>
</tr>
</tbody>
</table>

6.4 Troubleshooting

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABILE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch Screen does not respond to touch.</td>
<td>The object on the touch screen was not touched long enough.</td>
<td>The touch screen is set up so that an object must be pushed firmly for a moment. A quick “peck” with a finger or stylus may not be registered.</td>
</tr>
<tr>
<td>Monitor hangs: Monitor is locked up and there is no response to touches.</td>
<td>Main unit is not powered up. Plug is not seated in J5 or J6 of the Monitor’s backpanel. Backlight turned off.</td>
<td>Press RESET button on backpanel.</td>
</tr>
<tr>
<td>No power to unit.</td>
<td>Main unit is not powered up. Plug is not seated in J5 or J6 of the Monitor’s backpanel. Backlight turned off.</td>
<td>Turn on or reset main circuit breaker to the Monitor. Re-seat Monitor backpanel power plugs J5 (120 VAC) or J6 (24 VDC). Touch the screen anywhere to turn the backlight on.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>REMEDY</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Monitor has communication errors.</td>
<td>Open connection or lose wire on the Modbus chain. Display may not be properly setup.</td>
<td>Check wiring. Refer to "Modbus" AND "Setup" previously in this manual. Refer to initial setup to setup downstream units. Go to the Setup screen and press \textsc{RESTART WITH NEW SETTINGS} to force the display to search for downstream devices.</td>
</tr>
<tr>
<td>Monitor is in Active alarm state.</td>
<td>Red LED is solid and alarms are listed under Active alarms.</td>
<td>Go to the Alarms Screen and press \textsc{"CLEAR ALL"}. (It takes a few seconds to clear all alarms.) If the Alarms persist, check the downstream device.</td>
</tr>
<tr>
<td>Monitor displays “---” or 65536.</td>
<td>The downstream device’s options are not setup properly or the downstream device is reading an analog value that is outside of its expected range.</td>
<td>Check the downstream device’s setup.</td>
</tr>
</tbody>
</table>
7 Web Pages

The Color Monitor has a web server that can display web pages if the Monitor has a functioning TCP/IP connection. Touch Setup → Network/SNMP to see the IP Address used for the web server. Enter the IP address into the address line of your browser, then “enter”, to display the start or Home page.

Figure 33 Web Pages: Home Page

A “device” is a points list or Modbus register map that corresponds to a physical device, such as a panelboard. The following web pages show a PDU with an M4G acquisition board (M4GACK), subfeeds monitored through the BCMS Enhanced Subfeeds points list, and a Color Monitor.

Figure 34 Web Pages: Device Chain

This list shows devices that are in the Monitor’s device chain.
The first device in the Devices list (Figure 34) is the Color Monitor itself, whose web page only shows the number of devices in the Monitor’s device chain, firmware level, and a user-defined model ID (Figure 35).

![PDI 7" Color Display](image)

Figure 35 Web Pages: Display Device

The remaining devices have monitoring data.

Click the PDU device line brings up the PDU M4G acquisition board web page (M4GACK) (Figure 36).

Click Device 3 BCMS ESF in the Web Pages Device Chain (Figure 37) to see monitoring data for the PDU’s subfeeds to its downstream devices.
Output 1 = Output from PDU transformer

Building Alarms are customer-selected and connected to PDU Contractor Board.

Digital Alarms are customer-selected and connected to PDU Contractor Board.

All data and alarm values are mapped from the PDU M4G board points list.

See the points list for the PDU M4G board for more information.

Figure 36 Web Pages: PDU Board
This device has alarms and warnings, see bar chart.

Percent load of circuit breaker rating shown by 1P circuit.

Device type: BCMS ESF (subfeeds group)
Modbus address (downstream from Monitor) = 3
Device name = BCMS ESF

Subfeed data is shown in series of tabbed screens. Click tab to view screen.

70% Load is Warning level (yellow).
80% Load is Alarm level (red).

NOTE: These web pages present data from the device points list. See the Enhanced Subfeeds points list for more information.

Figure 37 Web Pages: Enhanced Subfeeds
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCMS</td>
<td>Branch Circuit Monitoring System.</td>
</tr>
<tr>
<td>BCMS device</td>
<td>Power distribution elements monitored by a single points list (or Modbus register map) and addressed by a single Modbus address. Example: a panelboard is a BCMS device because it is monitored with one points list and has one Modbus address. An acquisition board can monitor three BCMS devices—two panelboards and one set of sub-distribution feeds.</td>
</tr>
<tr>
<td>BCMS IEC</td>
<td>BCMS points list for IEC format panelboards with 36 or 72 1P circuits.</td>
</tr>
<tr>
<td>BCMS Normal</td>
<td>Standard points list allowing individual circuits to be customized for warning and alarm thresholds. KWH measurements are available at the panelboard level.</td>
</tr>
<tr>
<td>BCMS KWH</td>
<td>Points list specialized for power measurement at the individual circuit level. Warnings and alarms thresholds are set the same for all panelboard circuits.</td>
</tr>
<tr>
<td>BCMS ESF</td>
<td>Enhanced Subfeeds Points list for large PDU subfeeds (e.g., 250A).</td>
</tr>
<tr>
<td>BCMS CB</td>
<td>Small points for measuring current in RPP subfeeds with CTs. When used, it has its own Modbus address, but its description or mapping is contained in the BCMS Normal and BCMS KWH points lists.</td>
</tr>
<tr>
<td>M4G</td>
<td>Points list for a PDU M4G data acquisition board and associated contractor board.</td>
</tr>
<tr>
<td>BMS</td>
<td>Building management system.</td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>An industrial communications protocol.</td>
</tr>
<tr>
<td>Modbus TCP/IP</td>
<td>Modbus protocol send over TCP/IP, which provides higher transmission speeds.</td>
</tr>
<tr>
<td>PDU</td>
<td>Power Distribution Unit.</td>
</tr>
<tr>
<td>points list</td>
<td>Modbus register map.</td>
</tr>
<tr>
<td>RPP</td>
<td>Remote Power Panel.</td>
</tr>
</tbody>
</table>
Bibliography

Points Lists

Points lists can be downloaded from the PDI website. Go to Service Software Downloads:

https://www.pdicorp.com/services/service-software-downloads

For BCMS points lists, download BCMS II Customer CD Info, a zip file. Unzip the file and open the directory \Points List for BCMS Version to find the following points lists and use the latest revision given:

- **BCMS Normal** panelboard points list is “BCMSII points list”.
- **BCMS KWH** panelboard points list is “BCMSII plus points list Power KWH”.
- **BCMS CB** points list for small RPP subfeeds is given at the end of the **BCMS Normal** and **BCMS KWH** points lists.
- **BCMS Enhanced Subfeeds (ESF)** points list, for large PDU subfeeds, is “BCMSII plus points list Fourteen Sub”.
- **BCMS IEC** panelboard points list (for IEC format panelboards with 36 or 72 1P circuits) is “72 BCMSII plus points list Europe KWH”.

For PDU points lists, download the WaveStar® PDU Customer CD, a zip file. Unzip the file and open the directory \Points List for WaveStar PDU & BCMS Version to find these points lists and use the latest revision given:

- **PDU board** points list is “M4G acquisition Points list”.
- Other points lists are the same as on the BCMS II Customer CD.

Manuels for Selected Products using the Color Monitor

JCOMM Installation and Operation PM375100

PowerHub 2 Power Distribution Unit 300-750 kVA Installation and Operation DOC15315

PowerPak 2 Power Distribution Unit Installation and Operation PM375116

PowerPak Power Distribution Unit 50-300 kVA Installation and Operation PM375118

Modular Compact Remote Power Panel Installation and Operation PM375115

The BCMS Hub can network with products having embedded Color Monitors:

WaveStar BCMS Hub Installation and Operation PM375108

Manuels can be downloaded from the product pages for the above products on the PDI website:

https://www.pdicorp.com/products
Appendix: Color Monitor Backpanel

The Color Monitor backpanel has these connections:

- Power connections: 120V AC, 230V AC, and 24VDC (230V is optional and requires a different transformer.)
- Modbus connections:
 - Downstream (to Monitor device chain) is always 4-wire Modbus
 - Upstream is 4-wire or 2-wire, jumper selected
- Summary Alarm: Dry contact (NO) signals when the Monitor has an alarm condition. Dry contact specification: 0.5A at 120VAC or 30VDC.

The backpanel also has a RESET button: If the Monitor hangs, you can reset it by pressing this button.

![Color Monitor Backpanel Image]

Figure 38 Color Monitor Backpanel

Replaceable parts:

- Fuse: 200 mA, 250V; replace fuse with a UL recognized, IEC compliant fuse of the same type.
- Battery: Lithium ion, Panasonic-BSG (CR2477), 3V, 1 AH (PDI Part Number 15174)

Caution: The battery used in this device may present a risk of fire or chemical burn hazard if mistreated. Do not recharge, disassemble, heat above 100°C (212°F) or incinerate. Replace
battery with Panasonic-BSG (CR2477), 3V, 1 AH (PDI Part Number 15174) only. Use of another battery may present a risk of fire or explosion.

Dispose of used battery promptly. Keep away from children. Do not disassemble and do not dispose of in fire.